Медицина и нанотехнологии против рака: «протоклетки» доставляют терапевтические и диагностические средства в ядро раковой клетки

PDF Печать E-mail
Актуальные темы - Нанотехнологии в медицине и биологии
19.04.2011 20:51

 

 

5

 

Постдокторант Карли Эшли (Carlee Ashley) вводит буфер в раствор протоклеток под наблюдением руководителя исследования профессора Университета Нью-Мехико Джеффа Бринкера (Jeff Brinker). (Фото: share.sandia.gov)

 

 

 

 

Объединив нанотехнологические методы с результатами медицинских исследований, ученые Национальной лаборатории Сандиа (Sandia National Laboratories), Университет Нью-Мехико (University of New Mexico, UNM), и Исследовательского и лечебного онкологического центра (Cancer Research and Treatment Center, CRTC) при UNM разработали эффективную стратегию использования наночастиц для уничтожения раковых клеток.


В статье, анонсируемой на обложке майского номера журнала Nature Materials, доступного он-лайн, ученые описывают кремниевые наночастицы размером около 150 нанометров в диаметре, напоминающие пчелиные соты, полости которых могут быть заполнены большими количествами различных лекарственных препаратов.

«Огромный потенциал нанопористого ядра, с его большой площадью поверхности, в сочетании с улучшенным таргетингом инкапсулирующего липидного бислоя [липосомы] позволяет отдельной «протоклетке», загруженной коктейлем из лекарственных препаратов, убивать резистентные раковые клетки», - комментирует суть работы ее руководитель профессор Университета Нью-Мехико Джефф Бринкер (Jeff Brinker), научный сотрудник лаборатории Сандиа.

1

 

Изображение протоклетки (криогенная ТЭМ) с нанопористым ядром и липидным бислоем толщиной около 4 нм. (Фото: nature.com)

 

 

 


Наночастицы и окружающие их образованные из липосом мембраны, практически аналогичные клеточным, вместе составляют комбинацию, которую можно рассматривать как «протоклетку»: мембрана «запечатывает» смертоносный груз и модифицируется молекулами (пептидами), специфически связывающимися с рецепторами, сверхэкспрессирующимися на поверхности раковых клеток. (Слишком большое количество рецепторов - один из сигналов того, что клетка является раковой). Наночастицы обеспечивают стабильность мембраны и содержат терапевтический (или диагностический, например, квантовые точки) груз, высвобождая его внутри клетки.

Сегодня одобренной Управлением по контролю над качеством пищевых продуктов и лекарственных средств США (U.S. Food and Drug Administration) стратегией доставки терапевтических препаратов с помощью наночастиц является использование липосом. Сравнение целевых липосом и протоклеток с идентичными мембранами и пептидными композициями показало, что способность доставлять большее количество препаратов, стабильность и эффективность таргетинга протоклеток приводят к многократному усилению цитотоксичности, специфически направленной на клетки рака печени человека.

Другое преимущество протоклеток над липосомами, говорит ведущий автор исследования Карли Эшли (Carlee Ashley), заключается в том, что использование липосом в качестве носителя требует специализированных стратегий загрузки, что делает процесс их производства более сложным. В отличие от обычных липосом нанопористые кремниевые частицы просто впитывают лекарственные препараты, загружаясь уникальными комбинациями, необходимыми для персонализированной медицины. Помимо химиотерапевтических препаратов они эффективно инкапсулируют токсины и малые интерферирующие РНК (siRNA), подавляющие экспрессию генов.


2

Схематическое изображение связывания протоклеток с клеточной мембраной с помощью целевых пептидов (1), интернализации протоклеток рецепторно-опосредованным эндоцитозом (2) и последующего высвобождения их груза в цитоплазме (3) и ядре (4) клетки. (Рис. nature.com)


РНК, биологические мессенджеры, «говорящие» клеткам, какие белки они должны синтезировать, в этом случае используются для подавления синтеза – один из способов вызвать запрограммированную клеточную смерть, или апоптоз.

Составляющие мембрану липиды служат в качестве щита, ограничивающего просачивание токсичных химиотерапевтических препаратов из наночастиц до тех пор, пока они не проникнут в раковую клетку. Это означает, что в организм пациента попадет меньшее количество яда, если протоклетки не найдут раковых клеток. Такое покрытие смягчает токсические побочные эффекты, практически неизбежные при проведении традиционной химиотерапии.

Вместо этого частицы – достаточно маленькие, чтобы оставаться незамеченными «радарами» печени и других органов – могут циркулировать в крови в течение многих дней или даже недель, в зависимости от их размера, ища свою жертву и не нанося вреда организму.

Используя данные созданной в CRTC библиотеки фагов – вирусов, поражающих бактерии – ученые нашли пептиды, специфически связывающиеся только с раковыми клетками.

«Белки, модифицированные целевым пептидом, связывающимся с клетками определенной карциномы, демонстрируют в 10000 большее сродство именно к этим раковым клеткам, чем к каким-либо другим клеткам организма», - объясняет Эшли. «Ключевой особенностью нашей протоклетки является то, что ее жидкий бислой позволяет высокоаффинное связывание всего с несколькими из таких пептидов. Это снижает вероятность неспецифического связывания и развития иммунной реакции».


3

На снимке слева (Hep3B) показана флуоресцирующая зеленым клетка рака печени с находящимися в ней протоклетками. Маленькие красные точки – липидные бислойные «упаковки». Их груз - заполненные лекарственными препаратами наночастицы – проникает в раковую клетку. Здесь их поры заполнены белым флуоресцентным красителем с целью визуализации. Проникновение более отчетливо видно на втором изображении. На снимке справа: протоклетки не проникают в здоровую клетку печени (гепатоцит). (Фото любезно предоставлены Carlee Ashley)


Ученые продолжают оптимизировать размер наночастиц из пористого кремния, получаемых аэрозолизацией раствора предшественников. Разработанный лабораторией Бринкера процесс производства пористых наночастиц – называемый индуцируемой выпариванием самосборкой – позволяет получать частицы от 50 нанометров до нескольких микрон в диаметре. Частицы размером от 50 до 150 нм идеально подходят для максимально долгой циркуляции в крови и поглощения раковыми клетками, поэтому до превращения в протоклетки они предварительно отбираются по размеру.

Сейчас метод тестируется на человеческих раковых клетках in vivo, и в ближайшее время ученые приступят к его проверке на опухолях мышей. По их оценкам, коммерчески доступным он может стать в течение пяти лет.


 

 

По материалам

Sandia and UNM lead effort to destroy cancers

 

Аннотация к статье The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers

 

Источник: NanoNewsNet

 

 

Related Articles:
 
 

Vinaora Visitors Counter

mod_vvisit_countermod_vvisit_countermod_vvisit_countermod_vvisit_countermod_vvisit_countermod_vvisit_countermod_vvisit_counter
mod_vvisit_counterToday28
mod_vvisit_counterYesterday0
mod_vvisit_counterThis week28
mod_vvisit_counterLast week0
mod_vvisit_counterThis month28
mod_vvisit_counterLast month0
mod_vvisit_counterAll days4459455

We have: 28 guests online
Your IP: 54.235.6.60
 , 
Today: Мар 19, 2024

Подписаться на рассылку

Лучшие обменники

Обменники электронных валют