
Полипиррол – проводящий полимер, покрытый углеродными нанотрубками. (Фото: nanonewsnet.ru)
«Полипиррол – традиционно проводящий полимер, который можно синтезировать электрохимическими методами в виде тонкой пленки на проводящих материалах», – объясняет Томас Дж. Вебстер (Thomas J. Webster). Возможность его использования была изучена в области защиты от коррозии и разработки электродных покрытий, электрохимических биосенсоров, полупроводниковых приборов, а также в биоэлектронике и других областях. Однако хотя он и зарекомендовал себя как перспективный материал со значительными возможностями в области биомедицины и контролируемой доставки лекарств, его потенциальная роль в снижении инфицирования и подавлении воспалительных реакций в ортопедии исследована недостаточно.
Сообщая о своих результатах в январском он-лайн номере журнала Nanotechnology, Вебстер и его коллеги представили «доказательство концепции» разработки и оценки доставки «по требованию» лекарственных препаратов in situ из полипиррола, использовав в качестве примера пенициллин/стрептомицин (антибиотики для борьбы с грамположительными и грамотрицательными бактериями) и дексаметазон (глюкокортикоид, применяемый в клинической практике в качестве противовоспалительного и иммуносуппрессирующего средства). Своими экспериментами ученые доказали, что лекарственные препараты можно по требованию выводить из покрытия костных имплантатов с целью уменьшения как септического, так и асептического воспаления.

Полипиррол, электроосажденный на обычном титане. (Фото: Webster Lab, Brown University)
Эта работа является продолжением более ранних исследований наномедицинской лаборатории Вебстера, продемонстрировавших, что такие наноструктурные материалы могут влиять на рост кости и способствуют ему.
Для создания своих полимерных покрытий ученые сначала вырастили многослойные углеродные нанотрубки (около 55 нм в диаметре) на анодированном нанотрубчатом титане методом химического осаждения из паровой фазы (chemical vapor deposition, CVD) с кобальтом в качестве катализатора. Мономеры полипиррола были окислены либо антибиотиками, либо дексаметазоном до проведения электрохимической полимеризации полипиролла вокруг углеродных нанотрубок.
«В нашем последнем исследовании анионные лекарственные препараты, связанные электростатически внутри тонкой полипоррольной пленки, выделялись при приложении отрицательного напряжения», - объясняет Вебстер. «В течение первых пяти циклов мы наблюдали выход анионных молекул из тонкой полипиррольной пленки и их обратное перемещение, вызванные постоянным процессом восстановления и окисления. Пики высвобождения пенициллина/стрептомицина, обусловленные восстановлением препаратов, исчезли через 15 циклов циклической вольтамперометрии. Пик восстановления дексаметазона наблюдался и после 25 циклов и исчез после 40 циклов».
Увеличение количества высвобождаемых препаратов после электрического возбуждения было значительным до 5 циклов. Совокупное высвобождение пенициллина/стрептомицина и дексаметазона было близко к 80 процентам от исходных количеств препаратов, и последующие циклы не вызывали их высвобождения.

Полипиррол, электроосажденный на многослойных углеродных нанотрубках. (Фото: Webster Lab, Brown University)
Хотя ученые установили, что при более высоких напряжениях или при более длительных периодах его подачи полипиррол может быть сверхокислен и теряет свою электрическую активность, углеродные нанотрубки поддерживают и пролонгируют его электроактивность благодаря своим превосходным проводниковым свойствам.
Вебстер отмечает, что полипиррол можно допировать не только антибиотиками и такими препаратами, как дексаметазон, но и многими другими биомолекулами – факторами роста, пептидами, ферментами, антителами, белками и пр., чтобы изменить их биологические, физические, химические и электрические свойства и получить контролируемую систему выделения, применимую во многих биомедицинских приложениях.
Кроме того, полипиррол можно интегрировать в имплантируемые чипы для вывода сигнала в биологическую среду.
«Эти предварительные результаты закладывают фундамент разработки интеллектуальных технологий доставки препаратов для применения в ортопедии, способных использовать считывание информации в замкнутом контуре для управления введением препаратов на основе этой информации», - говорит Вебстер. «Как основанные на углеродных нанотрубках сенсоры, так и системы контролируемой доставки лекарств могут стать отличным средством увеличения сроков использования ортопедических имплантатов, позволяющим имплантатам убивать бактерии, проявлять меньшую чувствительность к длительным воспалительным реакциям и, в конечном итоге, усиливать процесс образования кости».
По материалам
Nanotechnology research lays the foundation for smart implants
Аннотации к статьям
Electrically controlled drug release from nanostructured polypyrrole coated on titanium
Greater osteoblast functions on multiwalled carbon nanotubes grown from anodized nanotubular titanium for orthopedic applications
Multiwalled carbon nanotubes enhance electrochemical properties of titanium to determine in situ bone formation
Источник: NanoNewsNet